
Non-Empty	Lists

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	4.4

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Empty	lists

• Most	computations	on	lists	make	sense	on	
empty	lists
– (sum empty) = 0
– (product empty) = 1
– (double-all empty) = empty
– etc,	etc.

2

Non-empty	lists

• But	some	computations	don't	make	sense	for	
empty	lists
– min,	max
– average

3

Non-Empty	Lists

• For	these	problems,	the	list	template	doesn't	
make	sense,	either.

• For	these	problems,	we	use	a	different	data	
definition	and	a	different	template	that	is	
tuned	for	dealing	with	lists	that	are	always	
non-empty.

4

Data	Definition	for	Non-Empty	List

;; A NonEmptyListOfSardines is one of
;; -- (cons Sardine empty)
;; -- (cons Sardine
;; NonEmptyListOfSardines)

5

Template	for	Non-Empty	List
;; nelist-fn : NonEmptyListOfSardines -> ??
(define (nelist-fn ne-lst)
(cond
[(empty? (rest ne-lst)) (... (first ne-lst))]
[else (...

(first ne-lst)
(nelist-fn (rest ne-lst)))]))

6

(rest ne-lst) is	a	
NonEmptyListOfSardines

so	call	nelist-fn on	it

Template	Questions	for	Non-Empty	
Lists

;; nelist-fn : NonEmptyListOfSardines -> ??
(define (list-fn ne-lst)
(cond
[(empty? (rest ne-lst)) (... (first ne-lst))]
[else (...

(first ne-lst)
(list-fn (rest ne-lst)))]))

7

What	is	the	answer	for	
a	list	of	length	1?If	we	knew	the	answer	for	the	rest	of	the	list,	

and	we	knew	the	first	of	the	list,	how	could	
we	combine	them	to	get	the	answer	for	the	

whole	list?

Non-Empty	Lists:	The	General	Pattern

A NonEmptyListOfX is one of
-- (cons X empty)

interp: a list with a single X
-- (cons X NonEmptyListOfX)

interp: (cons x lst) represents a
sequence whose first element is x
and whose other elements are
represented by lst.

8

Template	Questions	for	Non-Empty	
Lists

;; nelist-fn : NonEmptyListOfX -> ??
(define (list-fn ne-lst)
(cond
[(empty? (rest ne-lst)) (.... (first ne-lst))]
[else (...

(first ne-lst)
(list-fn (rest ne-lst)))]))

9

What	is	the	answer	for	
a	list	of	length	1?If	we	knew	the	answer	for	the	rest	of	the	list,	

and	we	knew	the	first	of	the	list,	how	could	
we	combine	them	to	get	the	answer	for	the	

whole	list?

Example:	max
;; list-max : NonEmptyListOfInteger -> Integer
;; GIVEN: a non-empty list of integers,
;; RETURNS: the largest element of the list
(define (list-max ne-lst)
(cond
[(empty? (rest ne-lst)) (first ne-lst)]
[else (max

(first ne-lst)
(list-max (rest ne-lst)))]))

10

Example:	average
lon-avg : LON -> Number
Given a non-empty LON, returns its average
(lon-avg (cons 11 empty)) = 11
(lon-avg (cons 33 (cons 11 empty))) = 22
(lon-avg (cons 33 (cons 11 (cons 11 empty)))) = 55/3

11

Example:	average
;; lon-avg : NELON -> Number
;; Given a non-empty LON, returns its average
;; strategy: structural decomposition
(define (lon-avg ne-lst)
(cond
[(empty? (rest ne-lst)) (first ne-lst)]
[else (....

(first ne-lst)
(lon-avg (rest ne-lst)))]))

12

If	we	knew	the	answer	for	the	rest	of	the	list,	
and	we	knew	the	first	of	the	list,	how	could	
we	combine	them	to	get	the	answer	for	the	

whole	list?

Oops...				

• (lon-avg (list 33 11 11)) =	55/3

è (... 33 11) =	55/3

• (lon-avg (list 33 11)) =	22
è (... 33 11) =	22

• Can't	have	both!
13

11

Here	are	two	lists.	They	have	the	
same	first	element	(33),	 and	the	
average	of	their	rests	is	the	same	(11).			
But	they	have	different	averages.		So	
there's	no	way	to	combine	 33	and	11	
that	will	give	the	right	answer	for	both	
examples.		So	simply	 using	 the	
template	can't	possibly	 work.

Try	something	simpler!
lon-avg : NELON -> Number
Given a non-empty LON, returns its average
Strategy: combine simpler functions
(define (lon-avg lst)
(/ (lon-sum lst) (lon-length lst)))

14

Here	we	had	a	problem	that	could	not	be	
solved	by	blindly	 following	 the	template.	
But	we	could	still	solve	it	by	dividing	 it	into	
simpler	pieces	and	combining	 the	answers	
for	the	pieces.

Another	way	of	defining	non-empty	
lists

A NonEmptyListOfX is a
(cons X ListOfX)

15

When	to	use	this	one?

• Use	this	one	when	the	first	element	of	the	list	
needs	to	be	treated	specially.

• This	one	is	most	often	useful	with	a	help	
function	that	takes	an	X	and	a	ListOfX's.

• We'll	see	this	again	in	Module	7	when	we	talk	
about	accumulators	and	generalizing	with	
invarariants.

16

Remember,	don't	use	non-empty	lists	
unless	you	really	need	to

• The	vast	majority	of	problems	make	sense	for	
the	empty	list.

• Make	your	data	definitions	in	the	form	ListOfX
if	that	make	sense	(even	if	the	list	in	the	
problem	never	happens	to	be	empty).

• If	you're	using	a	NonEmptyListOfX template,	
and	you	have	duplicated	code,	that's	a	sign	
that	it	should	be	a	plain	old	ListOfX.

17

Summary

• You	should	now	be	able	to	explain	the	
difference	between	a	list	of	items	and	a	non-
empty	list	of	items

• You	should	be	able	to	write	down	the	
template	for	a	non-empty	list	and	use	it.

18

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Problem	Set	04

19

